Transformation of emotion based on acoustic features of intonation patterns for Hindi speech
نویسندگان
چکیده
Changes in intonation patterns may convey not only different meaning but different emotions even if the sequence of speech segments are same in a sentence. The patterns change depending upon structure and emotion of the sentence and require being stored in speech database. It is a difficult and time-consuming task to store all utterances of all the expressive style, which also consumes huge memory space. So there should be an approach that minimizes the time and memory space for emotion rich database. A number of studies in this respect have been done for several languages and models developed. However, for Hindi not many studies have been done. Taking this fact in consideration the intonation patterns have been studied for different languages in this paper and analysed for Hindi language. On the basis of dense research on intonation pattern an algorithm has been proposed for emotion conversion. This algorithm only requires storing neutral utterances in the database and other expressive style utterances can be derived from these neutral emotion. Proposed algorithm is based on linear modification model (LMM), where fundamental frequency (F0) is one of the factors to convert emotions. To perform the experiments, an intonational rich database is maintained for four expressive styles; surprise, happiness, anger and sadness. The perception tests also carried out, where group of listeners were asked to listen to the utterances from database and judge the emotion. This perception test involves classification of the emotions already available in the database by the listener and to judge the quality of converted neutral utterances. The results are analysed for four emotions: happiness, anger, surprise and sadness and performance of the experiment is evaluated. The accuracy of perception test on transformed emotions was found out to be 95% for surprise and 93.4% for sadness 82% for happiness and 96.7% for anger.
منابع مشابه
The Function of Pitch Range Variations in Samples of Emotional Expressions in Persian
This study aims at investigating the interface between emotion and intonation patterns (more specifically, duration and pitch amplitude of speech). To this end, the acoustic properties of spectral parameters related to speech prosody are investigated. The results of acoustic and Statistical analysis show that mean level and range of FO in the contours vary strongly as a function of the degree o...
متن کاملRobust Recognition of Emotion from Speech
This paper presents robust recognition of selected emotions from salient spoken words. The prosodic and acoustic features were used to extract the intonation patterns and correlates of emotion from speech samples in order to develop and evaluate models of emotion. The computed features are projected using a combination of linear projection techniques for compact and clustered representation of ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملFeatures Importance Analysis for Emotional Speech Classification
The paper analyzes the prosody features, which includes the intonation, speaking rate, intensity, based on classified emotional speech. As an important feature of voice quality, voice source are also deduced for analysis. With the analysis results above, the paper creates both a CART model and a weight decay neural network model to find acoustic importance towards the emotional speech classific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010